翻訳と辞書
Words near each other
・ Fundul Galbenei
・ Fundul Pârâului River
・ Fundulea
・ Fundamental theology
・ Fundamental theorem
・ Fundamental theorem of algebra
・ Fundamental theorem of algebraic K-theory
・ Fundamental theorem of arithmetic
・ Fundamental theorem of asset pricing
・ Fundamental theorem of calculus
・ Fundamental theorem of curves
・ Fundamental theorem of Galois theory
・ Fundamental theorem of ideal theory in number fields
・ Fundamental theorem of linear algebra
・ Fundamental theorem of linear programming
Fundamental theorem of poker
・ Fundamental theorem of Riemannian geometry
・ Fundamental theorem of software engineering
・ Fundamental theorem on homomorphisms
・ Fundamental theorems of welfare economics
・ Fundamental theory
・ Fundamental thermodynamic relation
・ Fundamental Tour
・ Fundamental unit (number theory)
・ Fundamental vector field
・ Fundamentalism
・ Fundamentalism (disambiguation)
・ Fundamentalism (sculpture)
・ Fundamentalist Church of Jesus Christ of Latter-Day Saints
・ Fundamentalist Presbyterian Church in Brazil


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Fundamental theorem of poker : ウィキペディア英語版
Fundamental theorem of poker

The fundamental theorem of poker is a principle first articulated by David Sklansky that he believes expresses the essential nature of poker as a game of decision-making in the face of incomplete information.
The fundamental theorem is stated in common language, but its formulation is based on mathematical reasoning. Each decision that is made in poker can be analyzed in terms of the expected value of the payoff of a decision. The correct decision to make in a given situation is the decision that has the largest expected value. If a player could see all of their opponents' cards, they would always be able to calculate the correct decision with mathematical certainty, and the less they deviate from these correct decisions, the better their expected long-term results. This is certainly true heads-up, but Morton's theorem, in which an opponent's correct decision can benefit a player, may apply in multi-way pots.
In probabilistic terms, this is an application of the law of total expectation.
==An example==
Suppose Alice is playing limit Texas hold 'em and is dealt 9♣ 9♠ under the gun before the flop. She calls, and everyone else folds to the big blind who checks. The flop comes A♣ K♦ 10♦, and the big blind bets.
She now has a decision to make based upon incomplete information. In this particular circumstance, the correct decision is almost certainly to fold. There are too many turn and river cards that could kill her hand. Even if the big blind does not have an A or a K, there are 3 cards to a straight and 2 cards to a flush on the flop, and he could easily be on a straight or flush draw. She is essentially drawing to 2 outs (another 9), and even if she catches one of these outs, her set may not hold up.
However, suppose she knew (with 100% certainty) the big blind held 8♦ 7♦. In this case, it would be correct to ''raise''. Even though the big blind would still be getting the correct pot odds to call, the best decision is to raise. Therefore, by folding (or even calling), she has played her hand differently from the way she would have played it if she could see her opponent's cards, and so by the Fundamental Theorem of Poker, her opponent has gained. She has made a "mistake", in the sense that she has played differently from the way she would have played if she knew the big blind held 8♦ 7♦, even though this "mistake" is almost certainly the best decision given the incomplete information available to her.
This example also illustrates that one of the most important goals in poker is to induce the opponents to make mistakes. In this particular hand, the big blind has practised deception by employing a semi-bluff — he has bet a hand, hoping she will fold, but he still has outs even if she calls or raises. He has induced her to make a mistake.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Fundamental theorem of poker」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.